Как используется факторный анализ. Факторный анализ: статистические методы и практические вопросы В окне перечислены все рассматриваемые эффекты. Статистически значимые эффекты помечены

Основные типы моделей, используемых в финансовом анализе и прогнозировании.

Прежде чем начать говорить об одном из видов финансового анализа – факторном анализе, напомним, что такое финансовый анализ и каковы его цели.

Финансовый анализ представляет собой метод оценки финансового состояния и эффективности работы хозяйствующего субъекта на основе изучения зависимости и динамики показателей финансовой отчетности.

Финансовый анализ преследует несколько целей:

  • оценку финансового положения;
  • выявление изменений в финансовом состоянии в пространственно-временном разрезе;
  • выявление основных факторов, вызвавших изменения в финансовом состоянии;
  • прогноз основных тенденций в финансовом состоянии.

Как известно, существуют следующие основные виды финансового анализа:

  • горизонтальный анализ;
  • вертикальный анализ;
  • трендовый анализ;
  • метод финансовых коэффициентов;
  • сравнительный анализ;
  • факторный анализ.

Каждый вид финансового анализа основан на применении какой-либо модели, дающей возможность оценить и проанализировать динамику основных показателей деятельности предприятия. Выделяют три основных типа моделей: дескриптивные, предикативные и нормативные.

Дескриптивные модели известны также, как модели описательного характера. Они являются основными для оценки финансового состояния предприятия. К ним относятся: построение системы отчетных балансов, представление финансовой отчетности в различных аналитических разрезах, вертикальный и горизонтальный анализ отчетности, система аналитических коэффициентов, аналитические записки к отчетности. Все эти модели основаны на использовании информации бухгалтерской отчетности.

В основе вертикального анализа лежит иное представление бухгалтерской отчетности – в виде относительных величин, характеризующих структуру обобщающих итоговых показателей. Обязательным элементом анализа являются динамические ряды этих величин, что позволяет отслеживать и прогнозировать структурные сдвиги в составе хозяйственных средств и источников их покрытия.

Горизонтальный анализ позволяет выявить тенденции изменения отдельных статей или их групп, входящих в состав бухгалтерской отчетности. В основе этого анализа лежит исчисление базисных темпов роста статей баланса и отчета о прибылях и убытках.

Система аналитических коэффициентов – основной элемент анализа финансового состояния, применяемый различными группами пользователей: менеджеры, аналитики, акционеры, инвесторы, кредиторы и др. Существуют десятки таких показателей, подразделяемых на несколько групп по основным направлениям финансового анализа:

  • показатели ликвидности;
  • показатели финансовой устойчивости;
  • показатели деловой активности;
  • показатели рентабельности.

Предикативные модели – это модели предсказательного характера. Они используются для прогнозирования доходов предприятия и его будущего финансового состояния. Наиболее распространенными из них являются: расчет точки критического объема продаж, построение прогнозных финансовых отчетов, модели динамического анализа (жестко детерминированные факторные модели и регрессионные модели), модели ситуационного анализа.

Нормативные модели. Модели этого типа позволяют сравнить фактические результаты деятельности предприятий с ожидаемыми, рассчитанными по бюджету. Эти модели используются в основном во внутреннем финансовом анализе. Их сущность сводится к установлению нормативов по каждой статье расходов по технологическим процессам, видам изделий, центрам ответственности и т. п. и к анализу отклонений фактических данных от этих нормативов. Анализ в значительной степени базируется на применении жестко детерминированных факторных моделей.

Как мы видим, моделирование и анализ факторных моделей занимают важное место в методологии финансового анализа. Рассмотрим этот аспект подробнее.

Основы моделирования.

Функционирование любой социально-экономической системы (к которым относится и действующее предприятие) происходит в условиях сложного взаимодействия комплекса внутренних и внешних факторов. Фактор - это причина, движущая сила какого-либо процесса или явления, определяющая его характер или одну из основных черт.

Классификация и систематизация факторов в анализе хозяйственной деятельности.

Классификация факторов представляет собой распределение их по группам в зависимости от общих признаков. Она позволяет глубже разобраться в причинах изменения исследуемых явлений, точнее оценить место и роль каждого фактора в формировании величины результативных показателей.

Исследуемые в анализе факторы могут быть классифицированы по разным признакам.

По своей природе факторы подразделяются на природные, социально-экономические и производственно-экономические.

Природные факторы оказывают большое влияние на результаты деятельности в сельском хозяйстве, в лесном хозяйстве и других отраслях. Учет их влияния дает возможность точнее оценить результаты работы субъектов хозяйствования.

К социально-экономическим факторам относятся жилищные условия работников, организация оздоровительной работы на предприятиях с вредным производством, общий уровень подготовки кадров и др. Они способствуют более полному использованию производственных ресурсов предприятия и повышению эффективности его работы.

Производственно-экономические факторы определяют полноту и эффективность использования производственных ресурсов предприятия и конечные результаты его деятельности.

По степени воздействия на результаты хозяйственной деятельности факторы делятся на основные и второстепенные. К основным относятся факторы, оказывающие решающее воздействие на результативный показатель. Второстепенными считаются те, которые не оказывают решающего воздействия на результаты хозяйственной деятельности в сложившихся условиях. Необходимо отметить, что в зависимости от обстоятельств один и тот же фактор может быть и основным, и второстепенным. Умение выделить из всего множества факторов главные обеспечивает правильность выводов по результатам анализа.

Факторы делятся на внутренние и внешние , в зависимости от того, влияет на них деятельность данного предприятия или нет. При анализе основное внимание уделяется внутренним факторам, на которые предприятие может воздействовать.

Факторы подразделяются на объективные , не зависящие от воли и желаний людей, и субъективные , подверженные влиянию деятельности юридических и физических лиц.

По степени распространенности факторы делятся на общие и специфические. Общие факторы действуют во всех отраслях экономики. Специфические факторы действуют в пределах отдельной отрасли или конкретного предприятия.

В процессе работы организации одни факторы оказывают воздействие на изучаемый показатель непрерывно на протяжении всего времени. Такие факторы называются постоянными . Факторы, воздействие которых проявляется периодически, называются переменными (это, например, внедрение новой технологии, новых видов продукции).

Большое значение для оценки деятельности предприятий имеет деление факторов по характеру их действия на интенсивные и экстенсивные . К экстенсивным относятся факторы, которые связаны с изменением количественных, а не качественных характеристик функционирования предприятия. В качестве примера можно привести увеличение объема производства продукции за счет увеличения числа рабочих. Интенсивные факторы характеризуют качественную сторону процесса производства. Примером может служить увеличение объема производства продукции за счет повышения уровня производительности труда.

Большинство изучаемых факторов по своему составу являются сложными, состоят из нескольких элементов. Однако есть и такие, которые не раскладываются на составные части. В связи с этим факторы делятся на сложные (комплексные) и простые (элементные) . Примером сложного фактора является производительность труда, а простого - количество рабочих дней в отчетном периоде.

По уровню соподчиненности (иерархии) различают факторы первого, второго, третьего и последующего уровней подчинения. К факторам первого уровня относятся те, которые непосредственно влияют на результативный показатель. Факторы, влияющие на результативный показатель косвенно, при помощи факторов первого уровня, называют факторами второго уровня и т. д.

Понятно, что при изучении влияния на работу предприятия какой-либо группы факторов необходимо их упорядочить, то есть проводить анализ с учетом их внутренних и внешних связей, взаимодействия и соподчиненности. Это достигается с помощью систематизации. Систематизация - это размещение изучаемых явлений или объектов в определенном порядке с выявлением их взаимосвязи и подчиненности.

Создание факторных систем является одним из способов такой систематизации факторов. Рассмотрим понятие факторной системы.

Факторные системы

Все явления и процессы хозяйственной деятельности предприятий находятся во взаимозависимости. Связь экономических явлений - это совместное изменение двух или более явлений. Среди многих форм закономерных связей важную роль играет причинно-следственная (детерминистская), при которой одно явление порождает другое.

В хозяйственной деятельности предприятия некоторые явления непосредственно связаны между собой, другие - косвенно. Например, на величину валовой продукции непосредственное влияние оказывают такие факторы, как численность рабочих и уровень производительности их труда. Множество других факторов косвенно воздействует на этот показатель.

Кроме того, каждое явление можно рассматривать как причину и как следствие. Например, производительность труда можно рассматривать, с одной стороны, как причину изменения объема производства, уровня ее себестоимости, а с другой - как результат изменения степени механизации и автоматизации производства, усовершенствования организации труда и т. д.

Количественная характеристика взаимосвязанных явлений осуществляется с помощью показателей. Показатели, характеризующие причину, называются факторными (независимыми); показатели, характеризующие следствие, называются результативными (зависимыми). Совокупность факторных и результативных признаков, связанных причинно-следственной связью, называется факторной системой .

Моделирование какого-либо явления - это построение математического выражения существующей зависимости. Моделирование - это один из важнейших методов научного познания. Существуют два типа зависимостей, изучаемых в процессе факторного анализа: функциональные и стохастические.

Связь называется функциональной, или жестко детерминированной, если каждому значению факторного признака соответствует вполне определенное неслучайное значение результативного признака.

Связь называется стохастической (вероятностной), если каждому значению факторного признака соответствует множество значений результативного признака, т. е. определенное статистическое распределение.

Модель факторной системы - это математическая формула, выражающая реальные связи между анализируемыми явлениями. В общем виде она может быть представлена так:

где - результативный признак;

Факторные признаки.

Таким образом, каждый результативный показатель зависит от многочисленных и разнообразных факторов. В основе экономического анализа и его раздела - факторного анализа - лежат выявление, оценка и прогнозирование влияния факторов на изменение результативного показателя. Чем детальнее исследуется зависимость результативного показателя от тех или иных факторов, тем точнее результаты анализа и оценка качества работы предприятий. Без глубокого и всестороннего изучения факторов нельзя сделать обоснованные выводы о результатах деятельности, выявить резервы производства, обосновать планы и управленческие решения.

Факторный анализ, его виды и задачи.

Под факторным анализом понимается методика комплексного и системного изучения и измерения воздействия факторов на величину результативных показателей.

В общем случае можно выделить следующие основные этапы факторного анализа :

  1. Постановка цели анализа.
  2. Отбор факторов, определяющих исследуемые результативные показатели.
  3. Классификация и систематизация факторов с целью обеспечения комплексного и системного подхода к исследованию их влияния на результаты хозяйственной деятельности.
  4. Определение формы зависимости между факторами и результативным показателем.
  5. Моделирование взаимосвязей между результативным и факторными показателями.
  6. Расчет влияния факторов и оценка роли каждого из них в изменении величины результативного показателя.
  7. Работа с факторной моделью (практическое ее использование для управления экономическими процессами).

Отбор факторов для анализа того или иного показателя осуществляется на основе теоретических и практических знаний в конкретной отрасли. При этом обычно исходят из принципа: чем больший комплекс факторов исследуется, тем точнее будут результаты анализа. Вместе с тем необходимо иметь в виду, что если этот комплекс факторов рассматривается как механическая сумма, без учета их взаимодействия, без выделения главных, определяющих, то выводы могут быть ошибочными. В анализе хозяйственной деятельности (АХД) взаимосвязанное исследование влияния факторов на величину результативных показателей достигается с помощью их систематизации, что является одним из основных методологических вопросов этой науки.

Важным методологическим вопросом в факторном анализе является определение формы зависимости между факторами и результативными показателями: функциональная она или стохастическая, прямая или обратная, прямолинейная или криволинейная. Здесь используется теоретический и практический опыт, а также способы сравнения параллельных и динамичных рядов, аналитических группировок исходной информации, графический и др.

Моделирование экономических показателей также представляет собой сложную проблему в факторном анализе, решение которой требует специальных знаний и навыков.

Расчет влияния факторов - главный методологический аспект в АХД. Для определения влияния факторов на конечные показатели используется множество способов, которые будут подробнее рассмотрены ниже.

Последний этап факторного анализа - практическое использование факторной модели для подсчета резервов прироста результативного показателя, для планирования и прогнозирования его величины при изменении ситуации.

В зависимости от типа факторной модели различают два основных вида факторного анализа - детерминированный и стохастический.

представляет собой методику исследования влияния факторов, связь которых с результативным показателем носит функциональный характер, т. е. когда результативный показатель факторной модели представлен в виде произведения, частного или алгебраической суммы факторов.

Данный вид факторного анализа наиболее распространен, поскольку, будучи достаточно простым в применении (по сравнению со стохастическим анализом), позволяет осознать логику действия основных факторов развития предприятия, количественно оценить их влияние, понять, какие факторы и в какой пропорции возможно и целесообразно изменить для повышения эффективности производства. Подробно детерминированный факторный анализ мы рассмотрим в отдельной главе.

Стохастический анализ представляет собой методику исследования факторов, связь которых с результативным показателем в отличие от функциональной является неполной, вероятностной (корреляционной). Если при функциональной (полной) зависимости с изменением аргумента всегда происходит соответствующее изменение функции, то при корреляционной связи изменение аргумента может дать несколько значений прироста функции в зависимости от сочетания других факторов, определяющих данный показатель. Например, производительность труда при одном и том же уровне фондовооруженности может быть неодинаковой на разных предприятиях. Это зависит от оптимальности сочетания других факторов, воздействующих на этот показатель.

Стохастическое моделирование является в определенной степени дополнением и углублением детерминированного факторного анализа. В факторном анализе эти модели используются по трем основным причинам:

  • необходимо изучить влияние факторов, по которым нельзя построить жестко детерминированную факторную модель (например, уровень финансового левериджа);
  • необходимо изучить влияние сложных факторов, которые не поддаются объединению в одной и той же жестко детерминированной модели;
  • необходимо изучить влияние сложных факторов, которые не могут быть выражены одним количественным показателем (например, уровень научно-технического прогресса).

В отличие от жестко детерминированного стохастический подход для реализации требует ряда предпосылок:

  1. наличие совокупности;
  2. достаточный объем наблюдений;
  3. случайность и независимость наблюдений;
  4. однородность;
  5. наличие распределения признаков, близкого к нормальному;
  6. наличие специального математического аппарата.

Построение стохастической модели проводится в несколько этапов:

  • качественный анализ (постановка цели анализа, определение совокупности, определение результативных и факторных признаков, выбор периода, за который проводится анализ, выбор метода анализа);
  • предварительный анализ моделируемой совокупности (проверка однородности совокупности, исключение аномальных наблюдений, уточнение необходимого объема выборки, установление законов распределения изучаемых показателей);
  • построение стохастической (регрессионной) модели (уточнение перечня факторов, расчет оценок параметров уравнения регрессии, перебор конкурирующих вариантов моделей);
  • оценка адекватности модели (проверка статистической существенности уравнения в целом и его отдельных параметров, проверка соответствия формальных свойств оценок задачам исследования);
  • экономическая интерпретация и практическое использование модели (определение пространственно-временной устойчивости построенной зависимости, оценка практических свойств модели).

Кроме деления на детерминированный и стохастический, различают следующие типы факторного анализа:

    • прямой и обратный;
    • одноступенчатый и многоступенчатый;
    • статический и динамичный;
    • ретроспективный и перспективный (прогнозный).

При прямом факторном анализе исследование ведется дедуктивным способом - от общего к частному. Обратный факторный анализ осуществляет исследование причинно-следственных связей способом логичной индукции - от частных, отдельных факторов к обобщающим.

Факторный анализ может быть одноступенчатым и многоступенчатым . Первый тип используется для исследования факторов только одного уровня (одной ступени) подчинения без их детализации на составные части. Например, . При многоступенчатом факторном анализе проводится детализация факторов a и b на составные элементы с целью изучения их поведения. Детализация факторов может быть продолжена и дальше. В этом случае изучается влияние факторов различных уровней соподчиненности.

Необходимо также различать статический и динамический факторный анализ. Первый вид применяется при изучении влияния факторов на результативные показатели на соответствующую дату. Другой вид представляет собой методику исследования причинно-следственных связей в динамике.

И, наконец, факторный анализ может быть ретроспективным, который изучает причины прироста результативных показателей за прошлые периоды, и перспективным, который исследует поведение факторов и результативных показателей в перспективе.

Детерминированный факторный анализ.

Детерминированный факторный анализ имеет достаточно жесткую последовательность выполняемых процедур:

  • построение экономически обоснованной детерминированной факторной модели;
  • выбор приема факторного анализа и подготовка условий для его выполнения;
  • реализация счетных процедур анализа модели;
  • формулирование выводов и рекомендаций по результатам анализа.

Первый этап особенно важен, так как неправильно построенная модель может привести к логически неоправданным результатам. Смысл этого этапа состоит в следующем: любое расширение жестко детерминированной факторной модели не должно противоречить логике связи “причина – следствие”. В качестве примера рассмотрим модель, связывающую объем реализации (Р), численность (Ч) и производительность труда (ПТ). Теоретически можно исследовать три модели:

Все три формулы верны с позиции арифметики, однако с позиции факторного анализа только первая имеет смысл, поскольку в ней показатели, стоящие в правой части формулы, являются факторами, т. е. причиной, порождающей и определяющей значение показателя, стоящего в левой части (следствие).

На втором этапе выбирается один из приемов факторного анализа: интегральный, цепных подстановок, логарифмический и др. Каждый из этих приемов имеет свои достоинства и недостатки. Краткую сравнительную характеристику этих способов мы рассмотрим ниже.

Виды детерминированных факторных моделей.

Существуют следующие модели детерминированного анализа:

аддитивная модель , т. е. модель, в которую факторы входят в виде алгебраической суммы, в качестве примера можно привести модель товарного баланса:

где Р - реализация;

Запасы на начало периода;

П - поступление товаров;

Запасы на конец периода;

В - прочее выбытие товаров;

мультипликативная модель , т. е. модель, в которую факторы входят в виде произведения; примером может служить простейшая двухфакторная модель:

где Р - реализация;

Ч - численность;

ПТ - производительность труда;

кратная модель , т. е. модель, представляющая собой отношение факторов, например:

где - фондовооруженность;

ОС

Ч - численность;

смешанная модель , т. е. модель, в которую факторы входят в различных комбинациях, например:

,

где Р - реализация;

Рентабельность;

ОС - стоимость основных средств;
Об - стоимость оборотных средств.

Жестко детерминированная модель, имеющая более двух факторов, называется многофакторной .

Типовые задачи детерминированного факторного анализа.

В детерминированном факторном анализе можно выделить четыре типовые задачи:

  1. Оценка влияния относительного изменения факторов на относительное изменение результативного показателя.
  2. Оценка влияния абсолютного изменения i-го фактора на абсолютное изменение результативного показателя.
  3. Определение отношения величины изменения результативного показателя, вызванного изменением i-го фактора, к базовой величине результативного показателя.
  4. Определение доли абсолютного изменения результативного показателя, вызванного изменением i-го фактора, в общем изменении результативного показателя.

Охарактеризуем эти задачи и рассмотрим решение каждой из них на конкретном простом примере.

Пример.

Объем валовой продукции (ВП) зависит от двух основных факторов первого уровня: численности работников (ЧР) и среднегодовой выработки (ГВ). Имеем двухфакторную мультипликативную модель: . Рассмотрим ситуацию, когда и выработка, и численность рабочих в отчетном периоде отклонились от запланированных значений.

Данные для расчетов приведены в таблице 1.

Таблица 1. Данные для факторного анализа объема валовой продукции.

Задача 1.

Задача имеет смысл для мультипликативных и кратных моделей. Рассмотрим простейшую двухфакторную модель . Очевидно, что при анализе динамики этих показателей будет выполняться следующее соотношение между индексами:

где значение индекса находится отношением значения показателя в отчетном периоде к базисному.

Рассчитаем индексы валовой продукции, численности работников и среднегодовой выработки для нашего примера:

;

.

Согласно вышеприведенному правилу, индекс валовой продукции равен произведению индексов численности работников и среднегодовой выработки, т. е.

Очевидно, что если мы рассчитаем непосредственно индекс валовой продукции, то получим то же самое значение:

.

Мы можем сделать вывод: в результате увеличения численности работников в 1,2 раза и увеличения среднегодовой выработки в 1,25 раза объем валовой продукции увеличился в 1,5 раза.

Таким образом, относительные изменения факторных и результативного показателей связаны той же зависимостью, что и показатели в исходной модели. Данная задача решается при ответе на вопросы типа: "Что будет, если i-й показатель изменится на n%, а j-й показатель изменится на k%?".

Задача 2.

Является основной задачей детерминированного факторного анализа; ее общая постановка имеет вид:

Пусть - жестко детерминированная модель, характеризующая изменение результативного показателя y от n факторов; все показатели получили приращение (например, в динамике, по сравнению с планом, по сравнению с эталоном):

Требуется определить, какой частью приращение результативного показателя y обязано приращению i-го фактора, т. е. расписать следующую зависимость:

где - общее изменение результативного показателя, складывающееся под одновременным влиянием всех факторных признаков;

Изменение результативного показателя под влиянием только фактора .

В зависимости от того, какой метод анализа модели выбран, факторные разложения могут различаться. Поэтому рассмотрим в контексте данной задачи основные методы анализа факторных моделей.

Основные методы детерминированного факторного анализа.

Одним из важнейших методологических в АХД является определение величины влияния отдельных факторов на прирост результативных показателей. В детерминированном факторном анализе (ДФА) для этого используются следующие способы: выявления изолированного влияния факторов, цепной подстановки, абсолютных разниц, относительных разниц, пропорционального деления, интегральный, логарифмирования и др.

Первые три способа основываются на методе элиминирования. Элиминировать - значит устранить, отклонить, исключить воздействие всех факторов на величину результативного показателя, кроме одного. Этот метод исходит из того, что все факторы изменяются независимо друг от друга: сначала изменяется один, а все другие остаются без изменения, потом изменяются два, затем три и т. д., при неизменности остальных. Это позволяет определить влияние каждого фактора на величину исследуемого показателя в отдельности.

Дадим краткую характеристику наиболее распространенным способам.

Способ цепной подстановки является весьма простым и наглядным методом, наиболее универсальным из всех. Он используется для расчета влияния факторов во всех типах детерминированных факторных моделей: аддитивных, мультипликативных, кратных и смешанных. Этот способ позволяет определить влияние отдельных факторов на изменение величины результативного показателя путем постепенной замены базисной величины каждого факторного показателя в объеме результативного показателя на фактическую в отчетном периоде. С этой целью определяют ряд условных величин результативного показателя, которые учитывают изменение одного, затем двух, затем трех и т. д. факторов, допуская, что остальные не меняются. Сравнение величины результативного показателя до и после изменения уровня того или иного фактора позволяет определить воздействие конкретного фактора на прирост результативного показателя, исключив влияние остальных факторов. При использовании этого метода достигается полное разложение.

Напомним, что при использовании этого способа большое значение имеет очередность изменения значений факторов, так как от этого зависит количественная оценка влияния каждого фактора.

Прежде всего нужно отметить, что не существует и не может существовать единой методики определения этого порядка - существуют модели, в которых он может быть определен произвольно. Лишь для небольшого числа моделей можно использовать формализованные подходы. На практике эта проблема не имеет большого значения, поскольку в ретроспективном анализе важны тенденции и относительная значимость того или иного фактора, а не точные оценки их влияния.

Тем не менее для соблюдения более или менее единого подхода к определению порядка замены факторов в модели можно сформулировать общие принципы. Введем некоторые определения.

Признак, непосредственно относящийся к изучаемому явлению и характеризующий его количественную сторону, называется первичным или количественным . Эти признаки: а) абсолютные (объемные); б) их можно суммировать в пространстве и времени. В качестве примера можно привести объем реализации, численность, стоимость оборотных средств и т. д.

Признаки, относящиеся к изучаемому явлению не непосредственно, а через один или несколько других признаков и характеризующие качественную сторону изучаемого явления, называются вторичными или качественными . Эти признаки: а) относительные; б) их нельзя суммировать в пространстве и времени. Примерами могут служить фондовооруженность, рентабельность и др. В анализе выделяют вторичные факторы 1-го, 2-го и т. д. порядков, получаемые путем последовательной детализации.

Жестко детерминированная факторная модель называется полной, если результативный показатель количественный, и неполной, если результативный показатель качественный. В полной двухфакторной модели один фактор всегда количественный, второй - качественный. В этом случае замену факторов рекомендуют начинать с количественного показателя. Если же имеется несколько количественных и несколько качественных показателей, то сначала следует изменить величину факторов первого уровня подчинения, а потом более низкого. Таким образом, применение способа цепной подстановки требует знания взаимосвязи факторов, их соподчиненности, умения правильно их классифицировать и систематизировать.

Теперь рассмотрим на нашем примере порядок применения способа цепных подстановок.

Алгоритм расчета способом цепной подстановки для данной модели выглядит следующим образом:

Как видим, второй показатель валовой продукции отличается от первого тем, что при его расчете принята фактическая численность рабочих вместо запланированной. Среднегодовая выработка одним рабочим в том и другом случае плановая. Значит, за счет увеличения количества рабочих выпуск продукции увеличился на 32 000 млн. руб. (192 000 - 160 000).

Третий показатель отличается от второго тем, что при расчете его величины выработка рабочих принята по фактическому уровню вместо плановой. Количество же работников в обоих случаях фактическое. Отсюда за счет повышения производительности труда объем валовой продукции увеличился на 48 000 млн. руб. (240 000 - 192 000).

Таким образом, перевыполнение плана по объему валовой продукции явилось результатом влияния следующих факторов:

Алгебраическая сумма факторов при использовании данного метода обязательно должна быть равна общему приросту результативного показателя:

Отсутствие такого равенства свидетельствует о допущенных ошибках в расчетах.

Другие методы анализа, такие как интегральный и логарифмический, позволяют достичь более высокой точности расчетов, однако эти методы имеют более ограниченную сферу применения и требуют проведения большого объема вычислений, что неудобно для проведения оперативного анализа.

Задача 3.

Является в определенном смысле следствием второй типовой задачи, поскольку базируется на полученном факторном разложении. Необходимость решения этой задачи обусловлена тем обстоятельством, что элементы факторного разложения составляют абсолютные величины, которые трудно использовать для пространственно-временных сопоставлений. При решении задачи 3 факторное разложение дополняется относительными показателями:

.

Экономическая интерпретация: коэффициент показывает, на сколько процентов к базисному уровню изменился результативный показатель под влиянием i-го фактора.

Рассчитаем коэффициенты α для нашего примера, используя факторное разложение, полученное ранее методом цепных подстановок:

;

Таким образом, объем валовой продукции повысился на 20% за счет увеличения численности рабочих и на 30% за счет увеличения выработки. Суммарный прирост валовой продукции составил 50%.

Задача 4.

Также решается на основе базовой задачи 2 и сводится к расчету показателей:

.

Экономическая интерпретация: коэффициент показывает долю прироста результативного показателя, обусловленную изменением i-го фактора. Здесь не возникает вопроса, если все факторные признаки изменяются однонаправленно (либо возрастают, либо убывают). Если это условие не выполняется, решение задачи может быть осложнено. В частности, в наиболее простой двухфакторной модели в подобном случае расчет по приведенной формуле не выполняется и считается, что 100% прироста результативного показателя обусловлены изменением доминирующего факторного признака, т. е. признака, изменяющегося однонаправленно с результативным показателем.

Рассчитаем коэффициенты γ для нашего примера, используя факторное разложение, полученное методом цепных подстановок:

Таким образом, увеличение численности работников обусловило 40% общего повышения объема валовой продукции, а увеличение выработки - 60%. Значит, увеличение выработки в данной ситуации является определяющим фактором.

Чтобы проанализировать изменчивость признака под воздействием контролируемых переменных, применяется дисперсионный метод.

Для изучения связи между значениями – факторный метод. Рассмотрим подробнее аналитические инструменты: факторный, дисперсионный и двухфакторный дисперсионный метод оценки изменчивости.

Дисперсионный анализ в Excel

Условно цель дисперсионного метода можно сформулировать так: вычленить из общей вариативности параметра 3 частные вариативности:

  • 1 – определенную действием каждого из изучаемых значений;
  • 2 – продиктованную взаимосвязью между исследуемыми значениями;
  • 3 – случайную, продиктованную всеми неучтенными обстоятельствами.

В программе Microsoft Excel дисперсионный анализ можно выполнить с помощью инструмента «Анализ данных» (вкладка «Данные» - «Анализ»). Это надстройка табличного процессора. Если надстройка недоступна, нужно открыть «Параметры Excel» и включить настройку для анализа .

Работа начинается с оформления таблицы. Правила:

  1. В каждом столбце должны быть значения одного исследуемого фактора.
  2. Столбцы расположить по возрастанию/убыванию величины исследуемого параметра.

Рассмотрим дисперсионный анализ в Excel на примере.

Психолог фирмы проанализировал с помощью специальной методики стратегии поведения сотрудников в конфликтной ситуации. Предполагается, что на поведение влияет уровень образования (1 – среднее, 2 – среднее специальное, 3 – высшее).

Внесем данные в таблицу Excel:


Значимый параметр залит желтым цветом. Так как Р-Значение между группами больше 1, критерий Фишера нельзя считать значимым. Следовательно, поведение в конфликтной ситуации не зависит от уровня образования.



Факторный анализ в Excel: пример

Факторным называют многомерный анализ взаимосвязей между значениями переменных. С помощью данного метода можно решить важнейшие задачи:

  • всесторонне описать измеряемый объект (причем емко, компактно);
  • выявить скрытые переменные значения, определяющие наличие линейных статистических корреляций;
  • классифицировать переменные (определить взаимосвязи между ними);
  • сократить число необходимых переменных.

Рассмотрим на примере проведение факторного анализа. Допустим, нам известны продажи каких-либо товаров за последние 4 месяца. Необходимо проанализировать, какие наименования пользуются спросом, а какие нет.



Теперь наглядно видно, продажи какого товара дают основной рост.

Двухфакторный дисперсионный анализ в Excel

Показывает, как влияет два фактора на изменение значения случайной величины. Рассмотрим двухфакторный дисперсионный анализ в Excel на примере.

Задача. Группе мужчин и женщин предъявляли звук разной громкости: 1 – 10 дБ, 2 – 30 дБ, 3 – 50 дБ. Время ответа фиксировали в миллисекундах. Необходимо определить, влияет ли пол на реакцию; влияет ли громкость на реакцию.

Факторный анализ прибыли позволяет оценить влияние каждого фактора в отдельности на финансовый результат в целом. Читайте, как его провести, а также скачайте методику проведения.

Суть факторного анализа

Суть факторного метода в том, чтобы определить влияние каждого фактора в отдельности на результат в целом. Это достаточно сложно сделать, так факторы влияют друг на друга, а если фактор не количественный (например, сервис), то его вес оценивают экспертным путем, что накладывает на весь анализ отпечаток субъективности. Кроме того, когда факторов влияющих на результат становится слишком много, то данные невозможно обрабатывать и рассчитывать без специальных программ математического моделирования.


Одним из самых главных финансовых показателей предприятия является прибыль. В рамках факторного анализа лучше анализировать маржинальную прибыль, где постоянные расходы отсутствуют, либо прибыль от продаж.

Узнайте причины изменений с помощью Excel-модели

Скачайте готовую модель в Excel. Она поможет узнать, как повлияли на выручку объем продаж, цена и структура продаж.

Факторный анализ методом цепных подстановок

При факторном анализе экономисты обычно применяют метод цепных подстановок, однако математически данный метод является некорректным и выдает сильно перекошенные результаты, которые значительно различаются в зависимости от того, какие переменные подставляют вначале, а какие после (например, в таблице 1).

Таблица 1 . Анализ выручки в зависимости от цены и количества проданной продукции

Базовый год

Текущий год

Прирост выручки

Выручка
В 0

Выручка
В 0

За счет
цены
В p

За счет количества
В q

Вариант 1

P 1 Q 0 -P 0 Q 0

P 1 Q 1 -P 1 Q 0

В 1 -В 0

Вариант 2

P 1 Q 1 -P 0 Q 1

P 0 Q 1 -P 0 Q 0

В 1 -В 0

В первом варианте выручка за счет цены выросла на 500 рублей, а во втором на 600 рублей; выручка за счет количества в первом выросла на 300 рублей, а во втором всего на 200 рублей. Таким образом, результаты значительно разнятся в зависимости от порядка подстановки. .

Можно более корректно распределять факторы, влияющие на конченый результат в зависимости от наценки (Нац) и количества продаж (Кол) (см. рисунок 1).

Рисунок 1

Формула прироста прибыли за счет наценки: П нац = ∆ Нац * (Кол (тек) + Кол (баз)) / 2

Формула прироста прибыли за счет количества: П кол = ∆ Кол * (Нац (тек) + Нац (баз)) / 2

Пример двухфакторного анализа

Рассмотрим в таблице 2 пример.

Таблица 2 . Пример двухфакторного анализа выручки

Базовый год

Текущий год

Прирост выручки

Выручка
В 0

Выручка
В 0

За счет наценки
В p

количества
В q

∆ P(Q 1 +Q 0)/2

∆ Q(P 1 +P 0)/2

В 1 -В 0

Товар «А»

Получились усредненные величины между вариантами цепных подстановок (см. таблицу 1).

Трехфакторная модель для анализа прибыли

Трехфакторная модель значительно сложнее двухфакторной (рисунок 2).

Рисунок 2


Формула, по которой определяют влияние каждого фактора в 3-х факторной модели (например, наценка, количество, номенклатура) на общий результат похожа на формулу в двухфакторной, но уже сложнее.

П нац = ∆Нац * ((Кол (тек) * Ном (тек) + Кол (баз) * Ном (баз)) / 2 - ∆Кол * ∆Ном / 6)

П кол = ∆Кол * ((Нац (тек) * Ном (тек) + Нац (баз) * Ном (баз)) / 2 - ∆Нац * ∆Ном / 6)

П ном = ∆Ном * ((Нац (тек) * Кол (тек) + Нац (баз) * Кол (баз)) / 2 - ∆Нац * ∆Кол / 6)

Пример анализа

В таблице мы привели пример использования трехфакторной модели.

Таблица 3 . Пример расчета выручки по трехфакторной модели

Прошлый год

Текущий год

Факторы выручки

Номенклатура

∆ Q((N 1 P 1 + N 0 P 0) / 2 -
- ∆ N ∆ P/6)

∆ P((N 1 Q 1 + N 0 Q 0) / 2 -
- ∆ N ∆ Q/6)

∆ N ((Q 1 P 1 + Q 0 P 0) / 2 -
- ∆ Q ∆ P/6)

Если посмотреть на полученные результаты анализа выручки факторным методом, то наибольший прирост выручки произошел за счет повышения цен. Цены повысились на (15 / 10 - 1) * 100% = 50%, следующим по значимости оказалось увеличение номенклатуры с 3 до 4 ед.– темп прироста (4 / 3 - 1) * 100% = 33% и на последнем месте «количество», которое возросло всего на (120/100-1)*100% = 20%. Таким образом, факторы влияют на прибыль пропорционально темпу роста.

Четырехфакторная модель

К сожалению, для функции вида Пр = Kол ср * Ном * (Цен - Cеб), не существует простых формул расчета влияния каждого отдельного фактора на показатель.

Пр – прибыль;

Kол ср – среднее количество на единицу номенклатуры;

Ном – количество номенклатурных позиций;

Цена – цена;

.

Есть метод расчета, основанный на теореме Лагранжа о конечных приращениях, с использованием дифференциального и интегрального исчислений, однако он настолько сложный и трудоемкий, что практически не применим в реальной жизни.

Поэтому для вычленения каждого отдельного фактора сначала вычисляются более общие факторы по обычной двухфакторной модели, а затем уже их составляющие тем же способом.

Общая формула прибыли: Пр = Кол * Нац (Нац – наценка на ед. продукции). Соответственно, мы определяем влияние двух факторов: количества и наценки. В свою очередь количество проданной продукции зависит от номенклатуры и количества продаж приходящихся в среднем на единицу номенклатуры.

Получаем Кол = Kол ср * Ном. А наценка зависит от цены и себестоимости, т.е. Нац = Цен – Себ. В свою очередь влияние себестоимости на изменение прибыли зависит от количества проданной продукции и от изменения самой себестоимости.

Таким образом, нам надо по отдельности определить влияние 4-х факторов на изменение прибыли: Кол, Цена, Себ, Ном, используя 4 уравнения:

  1. Пр = Кол * Нац
  2. Кол = Kол ср * Ном
  3. Затр = Кол * Себ.
  4. Выр = Кол * Цена

Пример анализа по четырехфактороной модели

Рассмотрим это на примере. Исходные данные и расчеты в таблице

Таблица 4 . Пример анализа прибыли по 4-х факторной модели

Прошлый год

Кол (ср)
Q (ср 0)

Прибыль
П 0

Q 0 *(P 0 -С 0)

∑Q 0 P 0 / ∑Q 0

∑Q 0 P 0 / ∑Q 0

Текущий год

Кол (ср)
Q (ср 1)

Q 1 *(P 1 -С 1)

Итоговые и средневзвешенные значения

∑Q 1 P 1 /∑Q 1

∑Q 1 P 1 /∑Q 1

Влияние фактора на изменение прибыли

Ном
N ∆

Кол
Q ∆

Кол (ср)
Q (ср)∆

Цен
P ∆

Нац
Н ∆

∆N * (Q (ср 0) +Q (ср 1)) / 2
* (H 1 + H 0) / 2

∆Q*(H 1 + H 0) / 2

∆Q (ср) * (N 1 + N 0) / 2

* (H 1 + H 0) / 2

∆P * (Q 1 + Q 0) / 2

∆С * (Q 1 + Q 0) / 2

∆H * (Q 1 +Q 0)/2

Итоговые и средневзвешенные значения

Примечание: цифры в таблице Excel могут на несколько единиц не совпадать с данным в текстовом описании, т.к. в таблице они округлены до десятых.

1. Сначала по двухфакторной модели (описанной в самом начале) раскладываем изменение прибыли на количественный фактор и фактор наценки. Это факторы первого порядка.

Пр = Кол * Нац

Кол ∆ = ∆Q * (H 1 + H 0) / 2 = (220 - 180) * (3,9 + 4,7) / 2 = 172

Нац ∆ = ∆H * (Q 1 + Q 0) / 2 = (4,7 - 3,9) * (220 + 180) / 2 = 168

Проверка: ∆Пр = Кол ∆ + Нац ∆ = 172+168 = 340

2. Вычисляем зависимость от параметра себестоимости. Для этого раскладываем затраты на количество и себестоимость по той же формуле, но со знаком минус, так как себестоимость снижает прибыль.

Затр = Кол * Себ

Себ∆ = - ∆С*(Q1+Q0) / 2 = -(7,2 - 6,4) * (180 + 220) / 2 = -147

3. Вычисляем зависимость от цены. Для этого раскладываем выручку на количество и цену по той же формуле.

Выр = Кол*Цена

Цена∆ = ∆P * (Q1 + Q0) / 2 = (11,9 - 10,3) * (220 + 180) / 2 = 315

Проверка: Нац∆ = Цена∆ - Себ∆ = 315 - 147 = 168

4. Вычисляем влияние номенклатуры на прибыль. Для этого раскладываем количество проданной продукции на число единиц в ассортименте и среднее количество, приходящееся на одну единицу номенклатуры. Так мы определим соотношение фактора количества и номенклатуры в натуральном выражении. После этого умножаем полученные данные на среднегодовую наценку и переводим в рубли.

Кол = Ном * Кол (ср)

Ном ∆ = ∆N * (Q (ср 0) + Q (ср 1)) / 2 * (H 1 + H 0) / 2 = (3 - 2) (73 + 90) / 2 * (4,7 + 3,9) = 352

Кол (ср) = ∆Q (ср) *(N 1 + N 0) / 2 * (H 1 + H 0) / 2 = (73 - 90) * (2 + 3) / 2 * (4,7 + 3,9) = -180

Проверка: Кол ∆ = Ном ∆ + Кол (ср) = 352-180 = 172

Приведенный четырехфакторный анализ показал, что прибыль увеличилась по сравнению с прошлым годом за счет:

  • повышения цен на 315 тыс. руб.;
  • изменения номенклатуры на 352 тыс. руб.

А уменьшилась за счет:

  • роста себестоимости на 147 тыс. руб.;
  • падения количества продаж на 180 тыс. руб.

Казалось бы, парадокс: общее количество единиц проданных в текущем году по сравнению с прошлым увеличилось на 40 единиц, но при этом фактор количества показывает отрицательный результат. Это потому что рост продаж произошел за счет увеличения номенклатурных единиц. Если в прошлом году их было всего 2, то в текущем добавилась еще одна. При этом по количеству товар «Б» продали в отчетном году на 20 ед. меньше, чем в предыдущем.

Это говорит о том, что товар «С» введенный в новом году частично заместил товар «Б», но привлек к себе новых покупателей, которых не было у товара «Б». Если в следующем году товар «Б» продолжит утрачивать свои позиции, то его можно выводить из ассортимента.

Что касается цен, то их повышение на (11,9/10,3 – 1)*100% = 15,5% не сильно затронуло продажи в целом. Если судить по товару «А», который не затронули структурные изменения ассортимента, то его продажи выросли на 20%, не смотря на рост цены на 33%. Это означает, что рост цен не является для фирмы критичным.

С себестоимостью все понятно: она выросла и прибыль уменьшилась.

Факторный анализ прибыли от продаж

Евгений Шагин , финансовый директор УК «РусЧерМет»

Чтобы провести факторный анализ, необходимо:

  • выбрать базу для анализа – выручка от продаж, прибыль;
  • отобрать факторы, влияние которых необходимо оценить. В зависимости от выбранной базы анализа ими могут быть: объем продаж, себестоимость, операционные расходы, внереализационные доходы, проценты за кредит, налоги;
  • оценить влияние каждого фактора на итоговый показатель. В базовый расчет по предыдущему периоду подставить значение выбранного фактора из отчетного периода и скорректировать итоговый показатель с учетом этих изменений;
  • определить влияние фактора. Вычесть из полученного промежуточного значения оцениваемого показателя его фактическое значение за предыдущий период. Если цифра положительная, изменение фактора оказало позитивное влияние, отрицательная – негативное.

Пример факторного анализа прибыли от продаж

Рассмотрим на примере. В отчет о финансовых результатах компании «Альфа» за предыдущий период подставим значение объема продаж за текущий период (571 513 512 руб. вместо 488 473 087 руб.), все остальные показатели останутся прежними (см. таблицу 5). Как результат, чистая прибыль увеличилась на 83 040 425 руб. (116 049 828 руб. – 33 009 403 руб.). Это означает, что если бы в предыдущем периоде компании удалось реализовать продукцию на ту же сумму, что и в этом, то ее чистая прибыль выросла бы как раз на эти 83 040 425 руб.

Таблица 5 . Факторный анализ прибыли по объему продаж

Показатель

Предыдущий период, руб.

с подстановкой
значения
фактора из
текущего
периода

Объем продаж

Валовая прибыль

Операционные расходы

Операционная прибыль

Проценты за кредит

Прибыль до налогообложения

Чистая прибыль

1 Значение объема продаж за текущий период.

2 Показатель пересчитан с учетом корректировки объема продаж.

По аналогичной схеме можно оценить влияние каждого фактора и пересчитать чистую прибыль, а итоговые результаты свести в одну таблицу (см. таблицу 6).

Таблица 6 . Влияние факторов на прибыль, руб.

Объем продаж

Себестоимость реализованной продукции, услуг

Операционные расходы

Внереализационные доходы/расходы

Проценты за кредит

Итого

32 244 671

Как видно из таблицы 6, наибольшее влияние в анализируемом периоде оказал рост продаж (83 040 425 руб.). Сумма влияния всех факторов совпадает с фактическим изменением прибыли за прошедший период. Отсюда можно сделать вывод о корректности результатов анализа.

Заключение

В заключение хочется понять: с чем же нужно сравнивать прибыль при факторном анализе? С прошлым годом, с базовым годом, с конкурентами, с планом? Как понять хорошо отработало предприятие этот год или нет? Например, предприятие увеличило прибыль за текущий год в два раза, казалось бы, это отличный результат! Но в это время конкуренты провели техническое переоснащение предприятия и со следующего года вытеснят счастливчиков с рынка. А если сравнивать с конкурентами, то у них доходы меньше, т.к. вместо, скажем, рекламы или расширения номенклатуры они вкладывали деньги в модернизацию. Таким образом, все зависит от целей и планов предприятия. Из чего следует, что прибыль фактическую нужно сравнивать, прежде всего, с плановой.

Факторный анализ со статистической точки зрения связан с поиском новых признаков, характеризующих объекты наблюдения на основе имеющейся информации, которая содержится в измеренных значениях k исходных признаков. Всю информацию об п объектах наблюдения можно представить в виде матрицыили прямоугольной таблицы "объект – признак" (табл. 5.6).

Таблица 5.6

Таблица "объект (i) – признак (/)"

Для дальнейшего анализа удобнее использовать матрицу наблюдаемых стандартизованных признаков, которые тоже относятся к категории измеримых, как рассчитанных непосредственно по результатам произведенных наблюдений

Стандартизация производится в соответствии с заменой (5.3), но обычно неизвестные математические ожидания и дисперсии n"j заменяются их выборочными аналогами: выборочной средней

и несмещенной оценкой дисперсии

либо асимптотически несмещенной оценкой дисперсии

Средние значения стандартизованных переменных равны нулю (), а дисперсии – единице ().

Связь новых переменных с наблюдаемыми признаками в факторном анализе аналогична регрессионной, но с тем существенным отличием, что эти новые объясняющие переменные, или факторы, неизвестны и нуждаются в идентификации. В моделях факторного анализа используются общие и индивидуальные факторы. Общие факторы связаны значимыми коэффициентами более чем с одной измеримой переменной. Каждый из индивидуальных факторов v. связан только с однойу-й измеримой переменной. При этом обычно предполагается, что индивидуальные факторы некоррелированы между собой и с общими факторами. Кроме того, для удобства факторы выбираются как стандартизованные:

Второй индекс переменныхобозначает номер объекта наблюдения i - 1,2,..., п. Первый индекс j = 1,2,...,k характеризует номер исходного признака Zjj и соответствующего ему индивидуального эффекта vjY, а для g lt первый индекс / = 1,2,..., от обозначает номер общего фактора.

Коэффициенты при общих факторах можно свести в матрицу

а коэффициенты при индивидуальных факторах для дальнейшего матричного представления модели будут диагональными элементами в диагональной матрице

Включающая нагрузки всех факторов общая матрица коэффициентов, или матрица факторного отображения, будет представлять собой результат объединения элементов обеих матриц:

Матрица значений общих факторов представляет собой матрицу размерности т х п, где т < k:

Матрица значений индивидуальных факторов имеет размерность kxn:

Общая матрица значений факторов может быть образована как результат объединения матриц общих и индивидуальных факторов:

С учетом введенных обозначений модель факторного анализа в матричной форме может быть представлена в виде

Модель факторного анализа с учетом неполного содержания исходной информации об объектах исследования в новой системе координат меньшей размерности (m < k) неизбежно будет содержать помимо общности в виде информации об объектах в системе координат общих факторов и специфичность, представляемую в виде значений характерных факторов. В то же время с учетом случайности выборки и погрешности измерения нормированное наблюдаемое значение содержит истинное значение, индивидуальную особенность Indjj каждого объекта и ошибку измерения е":

В рамках статистического подхода под истинным значением понимается математическое ожидание признака, вторая и третья составляющие характеризуют отклонение отдельного показателя на данном объекте от среднего. Если первая составляющая является общей статистической характеристикой совокупности объектов исследования, то вторая и третья компоненты являются носителями особенностей, присущих данному объекту и методу измерения. В процессе управления важнейшим моментом являются знание и умение учитывать индивидуальные черты отдельных объектов исследования.

Характеристика вариативности – дисперсия – для нормированного значения наблюдаемого признака может быть представлена в следующем виде:

(5.14)

Ошибка измерения обычно оказывается значительно меньше вариативной компоненты, поэтому их часто объединяют . Однако поскольку вариативная составляющая и ошибки измерения возникают независимо друг от друга, то их рассматривают как некоррелированные.

Рассмотрим слагаемые, содержащие сомножитель, величина которого является дисперсией произвольного общего факторапосле нормировки:

Величина дисперсии нормированного общего фактора равна единице:

Рассмотрим в формуле (5.14) слагаемые, содержащие сомножитель . Это коэффициент корреляции между двумя общими факторами, т.е.

После введения обозначения для коэффициента корреляции общих и индивидуальных эффектов

выражение (5.14) можно представить в виде

Из этого представления следует, что

Так как характерный фактор присущ только данной)-й переменной и некоррелирован с общими факторами, тои выражение (5.15) можно упростить:

Дальнейшее упрощение может быть получено для некоррелированных общих факторов, когда и, тогда

В этом случае дисперсия признакаравна сумме относительных вкладов в дисперсию этого признака каждого из т общих и одного характерного фактора.

Компонент общей дисперсииназывается общностью показателя Zj, т.е. суммой относительных вкладов всех т общих факторов в дисперсию признака Zj. Вклад в дисперсию признака z ) характерного фактора Vj, или характерность, определяется слагаемым bj. В свою очередь дисперсия характерного фактора состоит из двух составляющих: связанной со спецификой параметра Sj и связанной с ошибками измерений Е у

Если факторы специфичности Sj и ошибки Ej некоррелированы между собой, то модель факторного анализа примет вид

Вклад характерного фактора в дисперсию признака может быть представлен следующим образом:

Если выделить из дисперсии признака составляющую ошибки, то получим характеристику, называемую надежностью:

Вклад фактора /,. в суммарную дисперсию всех признаков определяется соответствующей суммой квадратов коэффициентов при нормированных значениях:

Вклад всех общих факторов в суммарную дисперсию признаков рассчитывается как сумма вкладов всех факторов:

Отношение этой суммы к размерности исходного признакового пространства

называют полнотой факторизации.

Исходные данные матрицы X (или Z) позволяют получить матрицу парных коэффициентов корреляции R. Для воспроизведения всех связей переменных в корреляционной матрице может быть использована матрица К = (А В):

Введем обозначение для первого слагаемого – редуцированной корреляционной матрицы: /¾ = ЛЛ Т.

Матрицу ВВ" вследствие того, что В является диагональной матрицей, можно представить в виде ВВ Т = В 2.

Таким образом, матрица парных коэффициентов корреляции исходных показателей может быть представлена в виде суммы:

В то время как R является корреляционной матрицей с единицами на главной диагонали, матрица R h представляет собой корреляционную матрицу с общностями на главной диагонали.

Для стандартизованных исходных признаков 7 корреляционная матрица R тождественна ковариационной матрице 2. Если рассматривать данные как выборку из генеральной совокупности, то определенная по выборочным данным матрица 2 (или К) является оценкой истинной ковариационной (корреляционной) матрицы. Несмещенная оценка может быть получена в виде

Рассчитаем редуцированную корреляционную матрицу с учетом равенства (5.4), используя для восстановления нормированных исходных признаков только общие факторы:

Выражение, стоящее между А и А т, является корреляционной матрицей стохастических связей между общими факторами

При этом общее выражение для редуцированной корреляционной матрицы примет вид

Если общие факторы некоррелированы между собой, то матрица С будет единичной, и при этом

Два последних выражения представляют собой фундаментальную теорему факторного анализа.

Пример 5.2

По данным о численности (дг,) и фонде заработной платы (,v2) пяти строительных организаций проведем факторный анализ методом главных компонент. Дано:

Решение

Рассчитаем выборочные характеристики переменных т, и Выборочный коэффициент корреляции равен

Преобразуем матрицу X в матрицу нормированных значений Z с элементами , где

Матрица парных коэффициентов корреляции имеет вид

Для определения собственных значений матрицы R рассмотрим характеристическое уравнение

Отсюда следует, что

Так как по условию компонентного анализа, то, где,

– соответственно дисперсии и вклад первой и второй главных компонент в суммарную дисперсию, равную

Относительный вклад компонент в суммарную дисперсию равен Таким образом,

Определим матрицу собственных векторов из уравнения Собственный векторнаходим из условия

Подставляя полученные значения, получим

откудаили

Нормированный собственный вектор, соответствующий, равен

Собственный вектор V 2 найдем, решив уравнение

откуда.или

Нормированный собственный вектор, соответствующий Х2. равен

тогда нормированная матрица собственных векторов имеет вид

Матрицу факторных нагрузок найдем по формуле . Подставив полученные значения, получим

Матрицу факторных нагрузок используют для интерпретации главных компонент, так как элементы матрицы а }Х) = характеризуют тесноту связи между Хгм признаком и /0-й главной компонентой. В нашем примере первая главная компонента тесно связана с показателями.г, и.г2, а /, характеризует размер предприятия.

Матрицу значений главных компонент F можно получить по формуле

Предварительно найдем обратную матрицу. Так как то

Тогда

Как уже отмечалось, матрица F. которую мы получили, характеризует пять строительных организаций в пространстве главных компонент. Ее можно использовать в задачах классификации и регрессионного анализа. Например, классификация организации но первой главной компоненте /, характеризующей размер предприятий, позволяет ранжировать их в порядке возрастания следующим образом: 4; 1:2: 5: 3. Значения главных компонент определены с точностью до знака, поэтому они могли бы оказаться противоположными для всех объектов, и проведенная ранжировка характеризовала бы размеры предприятий в порядке уменьшения. Определить правильность выбранного знака можно по значениям исходных показателей для крайних проранжированных объектов.

Пример 5.3

На основе информации о значениях семи исходных признаков получены два общих некоррелированных фактора. По известной матрице весовых коэффициентов двух общих факторов Л требуется воспроизвести редуцированную корреляционную матрицу R h, определить редуцированную корреляционную матрицу для случая использования только первого общего фактора R 1 и только второго общего фактора R" при условии, что дисперсия первого общего фактора больше, чем дисперсия второго.

Решение

1. Получим матрицу R h.

Произведем умножение матрицы А на А т и получим редуцированную корреляционную матрицу /?л. т.е. восстановленную из модели факторного анализа при условии, что факторы некоррелированы:

В матрице R /t на главной диагонали стоят дисперсии, представляющие общности, суммарный вклад в переменные имеющихся двух общих факторов.

2. Получим матрицу R 1.

Зададимся вопросом: что было бы, если бы мы пренебрегли вторым общим фактором и провели интерпретацию на основании только первого общего фактора? Какая редуцированная корреляционная матрица R 1 была бы воспроизведена?

Воспроизведенная, или редуцированная, по первому общему фактору матрица восстанавливает связи, объясняемые первым собственным вектором матрицы А. В матрице Д"на главной диагонали стоят вклады в дисперсию первого столбца фактора соответствующих переменных. Они совпадают с вкладами признаков в дисперсию первого фактора aj t.

Как первая, так и вторая воспроизведенные матрицы не отражают всей информации процесса. При этом вторая матрица R" отражает меньше информации, чем первая R 1. Это объясняется тем, что R 1 воспроизводит связи, соответствующие дисперсии первого фактора, которая больше дисперсии второго фактора. Однако и более полная матрица R/, не производит связей, определяемых характерными факторами, так как она объединяет весовые коэффициенты только общих факторов. Необъясненная же часть информации матрицами R/, и А приходится на характерные факторы.

При использовании факторного анализа исследователь сталкивается с различными проблемами. Наиболее часто они возникают в процессе содержательной интерпретации результатов анализа. Многие из проблем носят частный характер, не относящийся непосредственно к факторному анализу и присущий определенному классу задач, например наличие плохо обусловленных матриц парных коэффициентов корреляций, присущее классу экономико-статистических задач.

Среди проблем проведения факторного анализа можно выделить проблемы робастности, общности, выбора факторов, вращения факторов и оценки их значений и содержательной интерпретации, а также проблему построения динамических моделей.

В классическом факторном анализе на основе исходной таблицы "объект – признак" (см. табл. 5.6) формируется матрица нормированных значений исходных признаков. Опыт решения практических задач показывает, что наличие грубых ошибок данных при многомерном анализе может привести к дальнейшим трудностям. Малую чувствительность к наличию грубых ошибок данных обеспечивают робастные оценки параметров: среднего значения и дисперсии или среднего квадратического отклонения.

Рассчитываемая матрица парных коэффициентов корреляции является симметрической матрицей порядка к. Она является диагональной, и на се главной диагонали стоят единицы, соответствующие дисперсиям исходных нормированных показателей. Данная матрица R является исходной для проведения компонентного анализа. Для факторного анализа необходимо получить редуцированную матрицу /?/,.

Редуцированная корреляционная матрица /¾ служит основной для факторного анализа. Она также является симметрической порядка k, но на ее главной диагонали вместо единиц стоят общности hj. На основе этой матрицы рассчитывается матрица весовых коэффициентов Л. Ее элементы являются характеристиками стохастической связи между исходными признаками и общими факторами.

При переходе от редуцированной корреляционной матрицы к матрице весовых коэффициентов необходимо решить проблему нахождения факторов, включающую вопросы определения числа извлекаемых общих факторов и их вида. Значения весовых коэффициентов являются координатами признаков на новых осях координат. Этими координатными осями являются общие факторы. Чаще всего для их нахождения используется метод главных компонент.

Задача воспроизведения матрицы /?>, по матрице А не имеет однозначного решения. Выбор одной из возможных матриц является составной частью решения задачи вращения координатных осей.

После получения новой интегральной системы измерения – общих факторов – можно оценить значения индивидуальных факторов для каждого объекта исследования.

Сопоставление факторных решений в течение длительного периода обеспечивается динамическим моделированием, позволяющим выявить те признаки, влияние которых в будущем будет снижаться или, наоборот, возрастать.

Общие определения

Целью дисперсионного анализа (ANOVA – Analysis of Variation) является проверка значимости различия между средними в разных группах с помощью сравнения дисперсий этих групп. Разделение общей дисперсии на несколько источников (связанных с различными эффектами в плане), позволяет сравнить дисперсию, вызванную различием между группами, с дисперсией, вызванной внутригрупповой изменчивостью.

Проверяемая гипотеза состоит в том, что различия между группами нет. При истинности нулевой гипотезы, оценка дисперсии, связанной с внутригрупповой изменчивостью, должна быть близкой к оценке межгрупповой дисперсии. При ложности - значимо отклоняться.

В целом дисперсионный анализ может быть разделён на несколько видов:

  • одномерный (одна зависимая переменная) и многомерный (несколько зависимых переменных);

  • однофакторный (одна группирующая переменная) и многофакторный (несколько группирующих переменных) с возможным взаимодействием между факторами;

  • с простыми измерениями (зависимая переменная измеряется лишь один раз) и с повторными (зависимая переменная измеряется несколько раз).

В STATISITICA реализованы все известные модели дисперсионного анализа.

В STATISITICA дисперсионный анализ можно провести с помощью модуля Дисперсионный анализ в блоке STATISITICA Base (Анализ -> Дисперсионный анализ(ДА)) . Для построения модели специального вида используется полная версия Дисперсионного анализа, представленная в модулях Общие линейные модели , Обобщённые линейные и нелинейные модели , Общие регрессионные модели , Общие модели частных наименьших квадратов из блока Углубленные методы анализа (STATISTICA Advanced Linear/Non-Linear Models ).

в начало

Пошаговый пример в STATISTICA

Мы будем иллюстрировать возможности дисперсионного анализа в STATISITICA , рассматривая пошаговый модельный пример.

Исходный файл данных описывает совокупность людей с разным уровнем дохода, образования, возраста и пола. Рассмотрим, как влияют уровень образования, возраст и пол на уровень дохода.

По возрасту все люди были разделены на четыре группы:

  • до 30 лет;

  • от 31 до 40 лет;

  • от 41 до 50 лет;

  • от 51 года.

По уровню образования произошло деление на 5 групп:

  • незаконченное среднее;

  • среднее;

  • среднее профессиональное;

  • незаконченное высшее;

  • высшее.

Так как данные модельные, то полученные результаты будут носить в основном качественный характер и иллюстрировать способ проведения анализа.

Шаг 1. Выбор анализа

Выберем дисперсионный анализ из меню: Анализ -> Углубленные методы анализа -> Общие линейные модели .

Рис. 1. Выбор дисперсионного анализа из выпадающего меню STATISTICA

Далее откроется окно, в котором представлены различные виды анализа. Выбираем Вид анализа Факторный Дисперсионный анализ .


Рис. 2. Выбор вида анализа

В этом окне также можете выбрать способ построения модели: диалоговый режим или использовать мастер анализа. Выберем диалоговый режим.

Шаг 2. Задание переменных

Из открытого файла данных выберем переменные для анализа, щелкните кнопку Переменные , выберете:

Доход – зависимая переменная,

Уровень образования , Пол и Возраст – категориальные факторы (предикторы).

Заметим, что Коды факторов в этом простом примере можно не задавать. При нажатии на кнопку OK , STATISTICA задаст их автоматически.


Рис. 3. Задание переменных

Шаг 3. Изменение опций

Обратимся к вкладке Опции в окне GLM Факторный ДА .


Рис. 4. Вкладка Опции

В этом диалоговом окне вы можете:

  • выбрать случайные факторы;

  • задать тип параметризации модели;

  • указать тип сумм квадратов (SS), имеется 6 различных сумм квадратов (SS);

  • включить проведение кросс-проверки.

Оставим все установки по умолчанию (этого достаточно в большинстве случаев) и нажмём кнопку ОК .

Шаг 4. Анализ результатов – просмотр всех эффектов

Результаты анализа можно посмотреть в окне Результаты с помощью вкладок и группы кнопок. Рассмотрим, например, вкладку Итоги .


Рис. 5. Окно анализа результатов: вкладка Итоги

С этой вкладки можно получить доступ ко всем основным результатам. Воспользуйтесь остальными вкладками для получения дополнительных результатов. Кнопка Меньше позволяет изменить диалоговое окно результатов, удалив вкладки, которые, как правило, не используются.

При нажатии кнопки Проверить все эффекты получаем следующую таблицу.


Рис. 6. Таблица всех эффектов

Эта таблица выводит основные результаты анализа: суммы квадратов, степени свободы, значения F-критерия, уровни значимости.

Для удобства исследования значимые эффекты (p<.05) выделены красным цветом. Два главных эффекта (Уровень образования и Возраст ) и некоторые взаимодействия в данном примере являются значимыми (p<.05).

Шаг 5. Анализ результатов – просмотр заданных эффектов

Чтобы посмотреть, каким образом средний уровень дохода различается по категориям, удобнее всего воспользоваться графическими средствами. При нажатии на кнопку Все эффекты/графики появится следующее диалоговое окно.


Рис. 7. Окно Таблица всех эффектов

В окне перечислены все рассматриваемые эффекты. Статистически значимые эффекты помечены *.

Например, выберем эффект Возраст , в группе Отображать укажем Таблицу и нажмём ОК . Появится таблица, в которой для каждого уровня эффекта приведено среднее значение зависимой переменной (Доход) , величина стандартной ошибки и границы доверительных пределов.


Рис. 8. Таблица с описательными статистиками по уровням переменной Возраст

Эту таблицу удобно представить в графическом виде. Для этого выберем График в группе Отображать диалогового окна Таблица всех эффектов и нажмём ОК . Появится соответствующий график.


Рис. 9. График зависимости среднего дохода от возраста

Из графика ясно видно, что между группами людей разного возраста есть разница в уровне дохода. Чем выше возраст, тем больше доход.

Аналогичные операции проведём для взаимодействия нескольких факторов. В диалоговом окне выберем Пол *Возраст и нажмём ОК .


Рис. 10. График зависимости среднего дохода от пола и возраста

Получен неожиданный результат: для опрошенных людей в возрасте до 50 лет уровень дохода растёт с возрастом и не зависит от пола; для опрошенных людей старше 50 лет женщины имеют значимо больший доход, чем мужчины.

Стоит построить полученный график в разрезе уровня образования. Возможно, такая закономерность нарушается в некоторых категориях или, наоборот, носит универсальный характер. Для этого выберем Уровень образования * Пол * Возраст и нажмём ОК .


Рис. 11. График зависимости среднего дохода от пола, возраста, уровня образования

Видим, что полученная зависимость не характерна для среднего и среднего профессионального образования. В остальных случаях она справедлива.

Шаг 6. Анализ результатов – оценка качества модели

Выше в основном использовались графические средства дисперсионного анализа. Рассмотрим некоторые другие полезные результаты, которые можно получить.

Во-первых, интересно посмотреть, какую долю изменчивости объясняют рассматриваемые факторы и их взаимодействия. Для этого во вкладке Итоги нажмём на кнопку Общая R модели . Появится следующая таблица.

Рис. 12. Таблица SS модели и SS остатков

Число в столбце Множеств. R2 – квадрат множественного коэффициента корреляции; оно показывает, какую долю изменчивости объясняет построенная модель. В нашем случае R2 = 0.195, что говорит о невысоком качестве модели. В самом деле, на уровень дохода влияют не только факторы, внесённые в модель.

Шаг 7. Анализ результатов – анализ контрастов

Часто требуется не только установить различие в среднем значении зависимой переменной для разных категорий, но и установить величину различия для заданных категорий. Для этого следует исследовать контрасты.

Выше было показано, что уровень дохода для мужчин и женщин значимо отличается для возраста от 51, в остальных случаях различие не значимо. Выведем разницу в уровне дохода для мужчин и женщин в возрасте выше 51 года и между 40 и 50 годами.

Для этого перейдём во вкладку Контрасты и выставим все значения следующим образом.


Рис. 13. Вкладка Контрасты

При нажатии кнопки Вычислить появится несколько таблиц. Нас интересует таблица с оценками контрастов.


Рис. 14. Таблица Оценки контрастов

Можно сделать следующие выводы:

  • для мужчин и женщин старше 51 года разница в уровне дохода составляет 48,7 тыс. долл. Разница значима;

  • для мужчин и женщин в возрасте от 41 до 50 лет разница в уровне дохода составляет 1,73 тыс. долл. Разница не значима.

Аналогично можно задать более сложные контрасты или воспользоваться одним из заранее заданных наборов.

Шаг 8. Дополнительные результаты

Используя остальные вкладки окна результатов можно получить следующие результаты:

  • средние значения зависимой переменной для выбранного эффекта – вкладка Средние ;

  • проверка апостериорных критериев (post hoc) – вкладка Апостериорные ;

  • проверка сделанных для проведения дисперсионного анализа предположений – вкладка Предположения ;

  • построение профилей отклика/желательности – вкладка Профили ;

  • анализ остатков – вкладка Остатки ;

  • вывод матриц, используемых в анализе – вкладка Матрицы ;